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Abstract. We consider memory retrieval in a nehvork of M modules. A module consists 
of N neuronal units, each of which is connected to all N - 1 other units within the same 
module, and to L units dishibuted randomly throughout all the other modules. Both 
short- and long-range connections are symmetric. The "nib are threshold-linear with a 
continuous positive output. Each m d u l e  can retrieve one of D local activity patterns, or 
'features', stored on the corresponding shod-range connections. Furthermore, P global 
activity patterns, each consisting of combinations of M 1-1 features, are stored on the 
dilute long-range connections. When M > 1 the long-range connections endow the 
network with attractor states correlated with a single global pattern, and we study its 
storage capacity within a mean-field approach. If P = D, and each feature appears in 
only one pattern, our model reduces to an intermediate case between fully mnnected 
and highly dilute architectures, whose capacities we ~cmver  in the appropriate limits. As 
P f D takes larger (integer) values, the mawimum P pow, but it remains asymptotically 
proportional to N rather than to L + N - 1 (the total number of connections per 
unit). 7he madmum amount of retrievable information per synapse, on the other hand, 
decreases. Moreover, as P I D  grows, retrieval attractors have to compete with a 'memoy 
glass' state, involving the retrieval of spurious combinations of features, whose existence 
and stability we describe analytically. We suggest implications for neocortical memory 
functions. 

1. Introduction 

Ever since Marr [7], local excitatory connections among pyramidal cells (the recur- 
rent collaterals) have often been hypothesized to provide patches of neocortex with 
the properties of an autoassociative memory. The role of the collaterals, much as 
in many formal network models, would be to retrieve one of a set of several local 
activity patterns on the basis of a partial cue. However, some neurobiologists, e.g. 
Braitenberg [5], tend to regard the whole of neocortex, or at least its so-called associ- 
ation areas, as a kind of associative memory device, in which some of the long-range 
corti-rtical connections, alongside short-range ones§, would also implement the 
storage and retrieval of global activity patterns. This view inevitably poses the prob- 
lem of the storage capacity that such a device would have, and whether it would be 
consistent with broad constraints of plausibility and efficiency. 

We address this question by considering a formal model which includes, as its 
crucial aspect, the operation of both short- and long-range connections in memory 
retrieval. This involves both a specific architecture, or connectivity, and a particular 

5 Note that there tend to be about as many long-range connections as there are short-range [- 10') [I]. 
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organization of the memory patterns (which can be conceived as resulting from a 
separate storage process). The remaining ingredients of the model, such as the 
type of processing units, the representation of inhibition and so on, are taken as in 
[12,14], where an appropriate framework has been suggested for discussing issues of 
memory capacity in a cortically plausible context which includes both sparse coding 
and inhibitory control of excitatory activity. 

The model is introduced in section 2, and the capacity analysis presented in 
section 3. The main results are briefly discussed in the last section, while some of 
the formal derivations are included in the appendices. 

D O’Kane and A lieves 

2. A modular model 

Without necessarily subscribing to the view that cortices can be chopped up into 
discrete modular elements, we consider a network in which units are grouped into M 
modules, each containing N units. In each module, units receive both what we shall 
call short- and long-range connections. Short-range are those inputs which come from 
the other N - 1 units within the same module, while long-range connections originate 
at L units distributed randomly, and differently for each receiving unit, throughout 
the remaining modules (see figure 1). All connections are taken to be symmetric. 

” 

3 4 5  

C M X  
C M Z  
B L Y  
A L Z  
B N X  
A N Y  

Flgure 1. Schematic representation of the architecture of the nework (top) (only the 
connections relative to one module are drawn for clarily) and of the wrresponding 
memory organization (middle). Full lines represent short-range connections while the 
broken lines denote long-range connections. The table at the bottom gives an example 
of how features could combine into patterns when p = 2. Boldface letters denote one 
particular pattern being reeieved. 
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P patterns are stored on both the short- and long-range connections. However 
each of these (global, nehvork) patterns is made up of A4 features, one per module, 
each drawn from a repertoire of D feahtres stored in that module. We assume 
that the distribution of firing rates q representing each feature d within a module 
m (occurring during a learning phase not described here, and which would result in 
Hebbian-like synaptic modifications) is given independently for each unit z (and d ,  m) 
by some probability distribution P7( q;J. Note that i = 1,. . . , N, d = 1, . . . , D and 
m = i , .  . . , M. A giobai parrern, iabeiied p (witii p = i,. . . , Pj, is then a random 
combination { d y ,  . . . , dP_, . . . , d a } .  For simplicity, we shall assume that P / D  E p 
is integral, and that features are assigned to patterns by randomly partitioning the P 
patterns in each module into D groups of p elements (there are P ! / ( P ! ) ~  possible 
such assignments). 

Note that for p > 1 different patterns will share some common features, but 
t 1 I a L  LuLy ,,‘nu wd!  oii werage be repieseated bjj ihe same h C u i e  in ody i f i ~ t h i i  
1/ D of the modules. One need not wony about setting an upper limit on p ,  as the 
calculation will show the model to be viable for only relatively low values of p.  

The total number of connections to a neurone is given by C = L + N - 1, and 
we define 

+L”. ”” ..-- :. ... : 

L y = :  c (I) 

as the fraction of long-range connections. 
As in [14] we impose that the probability distribution P,, satisfy (q) = ( q 2 )  = a. 

The variable a thus defined is a measure of the sparse coding, while To = ( ( q 2 )  - 
( ~ ) ~ ) / a l  = (1- a ) / .  sets the natural scale for the inverse of the gain, to be defined 
below. When necessary for explicit calculations, we shall take a simple binary form 
for Pn, since it has been shown [14] that more realistic distributions produce similar 
results. 

The short- and long-range connection strengths are given by ‘Hebbian’ covariance 
rules 114) of the form 

(each feature is repeated p times while storing memories within a module). The 
variable cimjn reflects the dilution and is 1 with probability q and 0 with probability 
(1 - q )  where 

L 
q =  N ( M - 1 )  (3) 

Strong dilution is imposed on the long-range connections by letting q << 1. We 
take the equilibrium states of the net to he equivalent to those obtained through a 
dynamics with random asynchronous updating of the form 
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where g is the gain of each unit, Tthr its threshold, h , - ( ~ )  is the local field at unit 
im at time r and is given by 

D O'Kane and A Treves 

where b ( z )  expresses the feedback control of the mean activity, z = ( V ) .  by in- 
hibitory interneurones which are assumed to react very quickly to the average exci- 
tatory activity z. The form of b ( z )  is irrelevant to a determination of the pattern 
storage capacity and its integral is denoted by B( z) such that 

(5 )  

Note that the positive output V has a threshold linear dependence on the field 
hi-,  which has been argued to approximate the current-to-frequency transduction 
of typical pyramidal cells. The last symmetry-breaking term represents a persistent 
external stimulus used as a cue for retrieving a particular pattern U, 

3. Attractor states and storage capacity 

The attractor states of the system [2] are studied by looking for the minima of the 
free energy. The first two terms in the system Hamiltonian 

represent the contriiiutions of the short- and iong-range connections. Tie significance 
of the other terms has been explained above. 'Ib average over the quenched random 
patterns in the free energy, one adopts [3] the replica trick based on the identity 

(Z" ) ,  - 1 (In .Z)q = lim 
n-0 n 

which results in the generation of an n-replica thermodynamic partition function 

(7) 

The average over the dilution (appendix A) is straightforward (equivalent to the 
approach first used by Sompolinsky 1111 in which the dilution is treated as a random 
synaptic noise subject to a Gaussian distribution) as long as L >> 1 and D + 00. To 
allow for the existence of states which have a finite correlation with no more than 
one pattern, we also have to assume that M >> 1. 
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The states of the system can be characterized by macroscopic order parameters. 
Labelling Y, 6 individual replicas, the order parameters are the overlap of the state 
of the whole network with the one pattern being retrieved 

Short- and long-range connections in memov 

the mean network activity 

m,i, 

and the mean square activity in a module 

Since it was shown [13] that replica symmetry breaking is less significant for a 
system of continuous output units subject to a global activity constraint than for a 
system of binary, locally constrained units [lo], we are justified in assuming a replica 
symmetry ansak. With such an ansa@ the final form of the free energy is (appendix B) 

where 

d* 
Tr(h,h,) = Tr{,) exp(0hV + ph2V2) Dz = - 6 r e  
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The order parameters characterizing the equilibrium states of the system at an 
inverse temperature p are arrived at by minimizing the free energy with respect to 
the variables of integration, yielding the saddle-point equations (appendix C). We 
then use these equations to derive the storage capacity of the network. We define 

and consider only the zero temperature limit in which 

if h < Tthr 

h - Tthr)’ if h > Tthr 
1 lim - l n T r ( h , h , ) =  

8-m P 

where l/g’ = l / g  - 2h,. Note that yo - y1 scales as 1/p signifying the fact that 
the system ‘freezes’ into a ground state in the low-temperature limit. Substituting 
the saddle point equations for t ,  and ik into the equations for h and letting for 
simplicity so + 0 gives 

where ;(I) is the rescaled function b ( z ) .  

uncondemed patterns. We define the following two signal to noise ratios: 

w = [;(z) - 5’’ - ?th,]/pTo (uniform) z1 = [ i ‘ ] / pT ,  (pattern specific). 

Parameter p measures the amplitude of the slow noise due to the multitude of 

(17) 

We write the final equations using the pattern averages defined in appendix D. 
Of the two equations which have to be satisfied on the U ,  w plane, one yields the 
capacity ac as the maximum value of 

P 
c a = -  

for which there are still solutions to 

and, when solved together with the first, the other equation determines the range 
allowed for the gain, 9: 

Once P,, has been chosen (19) can be solved numerically to give a,. For simplicity 
we choose a binary P?, such that q = 1 with probability a and q = 0 with probability 
(1 - a), and begin with the case p = 1, i.e. when there are as many patterns as there 
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are features in each module. In this case, as y - 0 (short-range connectivity only) 
the equations reduce to those for a fully connected network of N neurones storing D 
patterns (having A4 such networksuncoupled4oes not affect their capacity), while 
for y -+ 1 (long-range connectivity only) they reduce to those of a highly dilute [6] 
network storing P patterns 1141. For 0 < y < 1, ac interpolates smoothly, at any 
given a,  between the two limits. This is illustrated in figure 2, where ac is plotted 
against a for = 0,O.S and 1. In the dependence on a (approx a, a l/[aln(l/a)])  
the figure reproduces the well known effects of sparse coding. As cortically realistic 
values of the sparse coding parameter are very difficult to determine, here and in 
some of the following figures we display the results for all values of a ,  so as to make 
the conclusions valid irrespective of whatever particular range might apply in a given 
svstem. 

Flgure 2. Storage capacity aC as a function of sparseness of coding D for y = 
and 1.0. 

0.5 

The decomposition of the patterns into features becomes relevant when p > 1, 
and it is again convenient to consider first the two connectivity limits. When y = 0 
one is left with the equation for a fully connected network, with a replaced by 
a / p  I D/C. This simply reflects the fact that each of the modules is limited by 
its own capacity a, but, without coupling between the modules, there is no limit on 
P as such. When y = 1, p drops out of the capacity equation. This signifies that 
in this dilute connectivity limit the fact that a feature may belong, locally, to several 
pattn.w, 11- 1,Y bllrr, "IUYIY.,~ "a 

The interesting result is that for intermediate y one again obtains intermediate 
capacities. In particular, as p grows, a, also grows-asymptotically as p(1 - y) .  
Once again it is the limit on D I N ,  the capacity of the modules, which constrains the 
capacity of the network. 

This is misleading though, unless proper account is taken of another type of 
attractor state, which appears with the modular organization. It is the state in which 
the features that are retrieved in each module do not combine into any global pattern, 
so that none of the pattern overlaps is finite (for M - m). This state could be termed 
a 'memory glass' as the network is, as it were, frozen into a disordered configuration, 
not of single unit states, but of memory fragments. It can be seen that, whereas there 

-n+tn-.- h.nr .FFPr+ h.rs...a ,+ tho mnn~,+nn~ hpino 1 1 1  Inng-ranqe. 
L.&" -.... ".. ..Y.l "-I.o - ._..D ~ - -  
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are no thermodynamic solutions corresponding to k-mixtures of network patterns 
(with k > l),  there is a solution corresponding to one feature overlap being non-zero 
within each module, but all patterns overlaps vanishing (as 1/ D). 

The ‘storage capacity’ equation for such a solution can be derived from the saddle 
point equations already found. It turns out to be 

D O’Kane and A Treves 

Analysing such a solution, one finds a stability line of the form 

YA, = A i b ( 1 - 7 )  + 71 (22) 

beyond which the memory glass state is unstable to the emergence of a global 
pattern-it has become a saddle point of the free energy-and thus the network 
evolves into a retrieval state. 

For very low values of p, the value of a at which the memory glass solution be- 
comes unstable, according to (22), falls well below the critical loading of the retrieval 
state, For slightly larger values of p, the memory glass solution disappears, when a 
grows and crosses the limit expressed in (21), before ever reaching the instability line 
of (22). For larger p, however, the difference between the a-value at which the mem- 
ory glass solution disappears, and a,, at which retrieval states disappear, becomes 
narrow, and with increasing p the two limit have the same asymptotic behaviour. 
Hence at large p most of the a range useful for retrieval, up to a,, is ‘infested’ by 
the memory glass state. While the rate at which the two capacity limits approach each 
other depends on the fraction y of long-range connections (figure 3), it is only for 
y - 1 that they are still substantially far apart for p > 1. As the P memory patterns 
represent but a negligible proportion of the D M  possible combinations of features, 
it is likely that in such a situation any kind of dynamics would result in the memory 
glass basin of attraction dominating over the tiny retrieval basins. Admittedly, the 
presence of a persistent external stimulus (which has been taken to vanish in the final 
steps of our calculation) would enhance the capacity of retrieval states [12], and thus 
provide some reliet but then it is the external stimulus, not the long-range connec- 
tions, which succeeds in linking up the features retrieved locally into a meaningful 
combination, the global pattern. 

The question of the storage capacity is better understood by also considering the 
information capacity [4] i.e. the total amount of information [9] that can be retrieved 
from the neurons per synapse. For our network of continuous response units this 
is defined as in [12], and depends on three factors: the information stored in each 
activity pattern as determined by P,,, the fraction of it that can be retrieved (in the 
presence of interference effects due to the extensive memory loading), and finally the 
number of independent activity distributions which can simultaneously be in storage. 
The only proviso is that in the present case the independent activity patterns are those 
characterizing the local features, rather than the global network patterns; hence the 
total information per synapse is obtained by multiplying the retrievable information 
per unit present in a feature by e / p 9  rather than by a: 

p I n 2  (23) 



FiPN 3, ~ m p a r i s o n  &rweefl $he sioiage apaeiry a, fur the fetfievdi siaie $$j, and 
the upper limit an the edstence of the memory glass state (MG) as a function of 
(for the sake of clarify the lines are drawn as if f i  were a continuous variable)-in the 
right-hand diagram overleaf one can also distinguish the stability line, above which the 
m e m o v  glass becomes an unstable saddle point. (us) is the uniform state in which there 
is no retrieval, either lorally OI globally. 

I,,,, the retrievable information maximised over g and a, has been calculated to be 
around 0.1-0.3 bits per synapse for several different cases of autoassociative memory, 
with a mild dependence on the sparse coding parameter a .  We calculate I,,, for our 
case and the results are plotted in figure 4 for y = 0.5 and p = 1,2,3,10,100. 

complex than simply multiplicative, the asymptotic behaviour with p is determined by 
the fact that the l / p  factor cancels out the main p dependence, in a,, and I m ( p )  
becomes essentially constant. This occurs after an initial decrease, for low values 
of p,  as shown in figure 4. 

Alihoiigh ihe iiiaiiiiiiiii lm O i i i i i s  bi ir < a,, aiid i ; ~  d e p e i i d ~ ~ e  ~ i i  a is iiiijie 
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I I , , I , , ,  

1'05 a = o  1 1.0.8 0:n.i 

P/O = p  P/O = p 

Figure 3. (Continued) 

0 

n 

0 

Figure 4. Maximum retrievable information I,,,, in bits per synapse, versus a ,  for ,L = 1. 
2, 3, 10 and 100 with y = 0.5. 

4. Discussion 

The results we obtain are hardly surprising. Essentially, the number of patterns that 
can be stored depends on the number of connections per unit and on the sparseness 
of the coding as in simpler autoassociative memory models, while the total retrievable 
information is of the order of a fraction of a bit per synapse times the total number of 
synapses on which it is stored. Even going into quantitative details, no strange effect 
emerges. When fi  = 1, i.e. the global patterns are simply collections of non-repeating 
local features, one is left with an ordinary autoassociative memory whose connectivity 
is partly dense (locally) and partly dilute (globally). Its storage capacity interpolates, 
as the fraction y of long-range connections increases, between the lower limit of a 
fully connected network and the higher limit of an extremely diluted one. 
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When the same local feature appears .in more and more global patterns, i.e. for 
increasing p ,  the local components of the signal and the noise gain importance, and 
eventudb dominate, over the long-range components. As a result, what constrains the 
capacity is the (local) need to retrieve one of D features using only N - 1 = (1 - 7 )  C 
connections per unit. However, this does not allow a free ride on p, i.e. to increase 
P at will, because soon the long-range connections become unable to link up the 
local features into previously stored global patterns. This effect is manifested in 
the emergence of a memory glass state corresponding to the network lapsing into a 
spurious combination of features. 

The conclusion of the capacity analysis is that the present network is nor a viable 
model, however simplistic, for the organization of memory in neocortex. Whatever 
type of memory ability one might want to consider, and whichever way one might want 
to estimate the storage capacity of a real brain, clearly having the number of memory 
items scaling with the number of connections per unit, as is the case here, rather than 
increasjng with the size of the system, is wholly implausible from a biological point 
of view. 

If the model adequately defines the quantitative constraints implicit in a certain 
theoretical view, then there may be several reasons why the theoretical view is itself 
inadequate. One reason could be that memories are not processed in neocortex in 
the form of activity patterns, coarsely spread on a temporal scale of tens of d i s e c -  
onds, but of temporally finer elements, defined for example by the synchronicity of 
spike emission by selected groups of cells [l]. Another perhaps more economical 
reason could lie in the long-range projections of neocortical cells being very different 
from the sort of random, uniformly distributed connections considered here. A third 
could be associated with the process of memory storage being very different in neo- 
cortex from the autoassociative mechanism expressed by our ‘Hebbian’ learning of 
statistically independent patterns, which may be more immediately relevant, instead, 
to hippocampal processing (81. However one regards these issues, the analysis of our 
rather crude model indicates that a simple-minded autoassociative memory approach 
is probably unable to offer clues useful to understanding memory processing on a 
cortical scale. 
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Appendix A. Dilution 

We take the average as follows 
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An expansion may be performed with respect to the argument of the second exponent. 
This can then be expanded in the argument of the logarithm. Provided L >> 1, only 
three terms scale extensively. The first of these is the fully connected term, then 
there are two corrections. The dilution term becomes 

D O'kkne and A Treves 

. 

where A comes from a self-average over network patterns. However, one must be 
careful since the averaging over the dilution has introduced a coupling between the 
activity of a given unit in two different patterns. These patterns may share, in the 
module of that unit, the same feature-a possibility which must be accounted for in 
the self-average. One finds that 

Appendix B. Flee energy 

Keeping only extensively scaling terms and having averaged over the dilution, the 
n-replica partition function becomes 

One can perform the average with respect to qd for the uncondensed patterns i.e. 
d > 1 by expanding to second order-bigher-order terms do not scale extensively- 
then averaging and re-exponentiating the result. It is then possible to integrate out 
the order parameters relating to the uncondensed patterns; 32 and i$ for d > 1. 
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Rotating variables iiz -+ is, irk6 - rk6, it7 -+ t' and ii" - io we can then 
equate this to exp - P N M n  f at the saddle point as N - CO. We assume a replica 
symmetly ansa@. The trace over neurones can be simplified to a single site trace 
using the HubbardStratonovitch identity and simplifies further in the n - 0 limit. 

Appendix C. Saddle-point equations 
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The variables defied in the text hecome 

Appendix D. Pattern averages 

where the range of integration in each is over w + v( q/a) - z > 0. 

Appendix E. The memory glass solution 

Beginning at the saddle-point equations we impose i? = 0, and j.; non-zero for 
only a negligible fraction of modules to give 

and, defining the pattern averages as before, we find that 

allowing us to write (21). To derive the stability we look for the zero-valued eigen- 
values of the Hessian matrix. This is quite straightforward and results in (22). 
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